RE: O Dark Matter, Where Art Thou?

avatar

You are viewing a single comment's thread:

Lol. I'm a big fan of "Feynman Style" diagrams. Simple, yet they contain a lot in them, and they are very effective!

I read your reply to another comment, and I think dark matter takes the "boring" route in my opinion.

This relates to the question I asked on your previous post about the subject. I can imagine some data might come in one day about the energy/momentum imbalance we discussed, which can prove dark matter's interaction gravitationaly, but personally I think that will be the only way it interacts with the standard model particles. (I'm no fun :p)

Regardless. Any sort of detection would be exciting nontheless!

Thanks for the detailed article about dark matter, shedding the light on it is no easy matter ;)



0
0
0.000
3 comments
avatar

Thanks a lot for this nice comment and all these questions, even if one of them is a bit dark to me (see below) ;)

Lol. I'm a big fan of "Feynman Style" diagrams. Simple, yet they contain a lot in them, and they are very effective!

They are effective to convey a message. Now, if you want to make precision predictions, they quickly become a nightmare for various reasons (infinities, combinatorics, etc.). Excepted for this, I agree that they are cool ^^

I read your reply to another comment, and I think dark matter takes the "boring" route in my opinion.

It is more than fine to have such an opinion. This will maybe end into a very good idea to detect dark matter in a novel way. Or not so novel ;) At the end of the day, what matters most is that all options are considered so that we won't miss it.

This relates to the question I asked on your previous post about the subject. I can imagine some data might come in one day about the energy/momentum imbalance we discussed, which can prove dark matter's interaction gravitationaly, but personally I think that will be the only way it interacts with the standard model particles. (I'm no fun :p)

I am not sure to follow this question, and I am afraid you will need to clarify it.

The energy/momentum imbalance is the way used to detect signals of invisible particles at particle colliders. Showing a significant excess of collision events featuring a large momentum imbalance relative to the Standard Model (as such an imbalance also arises in the Standard Model) is sufficient to conclude that we have something new, heavy and invisible.

That is possibly a good candidate for dark matter (as this particle would have the right properties to be dark matter). However, how to conclude about anything gravitational here? The masses of the involved objects are way too low. We thus know for sure that any gravity effect is negligibly small.

0
0
0.000
avatar
The masses of the involved objects are way too low. We thus know for sure that any gravity effect is negligibly small.

I think you got what I meant by that last quote, because you explained it very well.

The negligibly small gravitational effect is what I had in mind as a possibility for it to be detectable in the future by some precision enhancements. (I have no idea if that can be possible, was just a thought)

From what I understand on how the momentum detection happens, is by measuring the radius of the curvature and the arc length of the charged particles' trajectories?

So in principle, if we can get super precise, even the tiniest gravitational effect should have an effect on the angle.

Hopefully I'm not way off with my understanding about it :p

0
0
0.000
avatar

Unfortunately, we are talking about really negligible effects. To give an order of magnitude, gravity is 10-40 times smaller than the strong force. Therefore, any associated effects are well below any conceivable detector resolution.

There is however one way out. If we live in more than 3 spatial dimensions, then heavier copies of the graviton could be around and leave some observable imprints in data. That is however a different story :)

0
0
0.000