# Hyperbolic Trigonometric Identity: cosh(2x) & sinh(2x)

in Threespeak2 months ago (edited)

In this video I go over the derivations of the double angle (or double argument) identities for hyperbolic trig cosine and sine, namely cosh(2x) and sinh(2x). The derivation of both is pretty straight forward given that 2x = x + x, and thus we can simply replace the y in x + y for both sinh(x+y) and cosh(x+y) identities which I solved in my earlier videos. The resulting identities are:

cosh(2x) = cosh^2(x) + sinh^2(x)
sinh(2x) = 2sinh(x)cosh(x)

I will be utilizing these hyperbolic trigonometry identities so make sure to watch this video and understand how they are derived!

View video notes on the Hive blockchain: https://peakd.com/mathematics/@mes/video-notes-hyperbolic-trigonometric-identity-cosh-2x-and-sinh-2x

Related Videos:

Hyperbolic Trigonometric Identity: cosh(x+y): https://youtu.be/B_rfrnhx-t4
Hyperbolic Trigonometric Identity: sinh(x+y): https://youtu.be/CtBzwqd4Rqc
Hyperbolic Functions - tanh(x), sinh(x), cosh(x) - Introduction: http://youtu.be/EmJKuQBEdlc .

SUBSCRIBE via EMAIL: https://mes.fm/subscribe

DONATE! ʕ •ᴥ•ʔ https://mes.fm/donate

Like, Subscribe, Favorite, and Comment Below!

MES Truth: https://mes.fm/truth
Official Website: https://MES.fm
Hive: https://peakd.com/@mes
Gab: https://gab.ai/matheasysolutions
Minds: https://minds.com/matheasysolutions
Pinterest: https://pinterest.com/MathEasySolns
Instagram: https://instagram.com/MathEasySolutions
Email me: [email protected]

Free Calculators: https://mes.fm/calculators

BMI Calculator: https://bmicalculator.mes.fm