Problemilla con las raíces de una ecuación cúbica. Tricky roots of cubics problem.⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Español | English |
Enunciado
α , β , γ |
---|
Es de sobra conocida la relación entre los coeficientes de una ecuación algebraica y sus raíces, en la forma de las funciones simétricas elementales de las mismas.
Este problema nos propone determinar el valor de la suma de las quintas potencias de las raíces de un polinomio, nos están pidiendo que expresemos el valor de la función simétrica de las quintas potencias en función de las funciones simétricas elementales.
①
⠀⠀⠀⠀ _\|/_ La relación entre la suma de potencias y las funciones simétricas unitarias es un problema en análisis combinatorio que encuentra su solución con las celebradas Identidades de Newton |
---|
Utilizando la relación de Newton ,
sn - a1sn-1 + a2sn-2 - ... + (-1)nnan = 0 |
---|
Donde,
an = (1n) = ∑α1α2 ... αn ,
funciones elementales |
---|
Solución
Tenemos una ecuación cúbica de forma que conocemos el valor de las funciones elementales (13), (12), (1)
x 3 + 2x + 1 , x 3 - a1x2 + a2x - a3 |
---|
La ecuación ①, es una ecuación recurrente, resolviendo los valores de sn ,
sn = a1sn-1 - a2sn-2 + ... + (-1)n + 1nan |
---|
Por lo tanto,
α 5 + β 5 + γ 5 = 10 |
Fácil y sencillo a la par que simpático y agradable.
∎
English | Español |
Statement
α , β , γ |
---|
The roots of an algebraic equation and coefficients are related by means of the elementary symmetric functions, as well known.
This problem poses the question on how fifth power sums and elementary symmetric functions related, asking to put fifth power sums symmetric function as elementary ones.
①
⠀⠀⠀⠀ _\|/_ The relations between power sums and unitary symmetric functions are problems on combinatorial analysis , solved by the celebrated Newtonian Identities |
---|
By means of the Newtonian relation,
sn - a1sn-1 + a2sn-2 - ... + (-1)nnan = 0 |
---|
Where,
an = (1n) = ∑α1α2 ... αn ,
elementary functions |
---|
Answer
Our equation is a cubic one, so we know value of the elementary symmetric functions (13), (12), (1)
x 3 + 2x + 1 , x 3 - a1x2 + a2x - a3 |
---|
Relation ①, is a recurrence relation, solving for sn ,
sn = a1sn-1 - a2sn-2 + ... + (-1)n + 1nan |
---|
Hence,
α 5 + β 5 + γ 5 = 10 |
Not so tricky.
∎
Media
Congratulations @j2e2xae! You have completed the following achievement on the Hive blockchain And have been rewarded with New badge(s)
Your next target is to reach 300 upvotes.
You can view your badges on your board and compare yourself to others in the Ranking
If you no longer want to receive notifications, reply to this comment with the word
STOP
Check out our last posts:
Keep up the good work. 👏🎵
Dear beloved Hive creator,
Coding poet Gudasol here to support you sharing your art + life on Hive.
As a fellow creator, I know how hard it is to get the word out there.
I built cXc.world to help creators like us get more support from the blockchain community + beyond.
Share your music on cXc.world, and copy the Markdown for a easy post includes embedded players for Spotify, Youtube, Soundcloud.
That way, you can earn HIVE + stack streams on centralized platforms, as they do still matter.
Not a music creator? No problem. You can still use cXc.world to find + share music you love.
What's next?
Preview the next evolution of cXc, Tetra.earth.
Expose local music from your area!
We're helping grassroots musicians, and you can too by adding their music (no sign up or WAX account required).
Join our community 🐬
Find fellow music lovers in cXc's Discord
Bad news: Saying see you later to Hive! 👋
We didn't get the needed support to continue cXc.world on Hive, as our DHF proposal lacked votes, but [Good News Everyone] cXc.world will add a Markdown copy button, allowing you to easily share your music + music you find on Hive.
For now, we're on WAX, with tools you can use to mint your own Music/Media NFT collection.
Curious about the future of Earth + ET relations? New economic systems?
Find more apps + art from Gudasol
Want to build tools like I used to share this?
I'd love to show you some tips on AI Code generation